Diagnóstico, tratamiento y vacunas
Lluis Montoliu, investigador del Centro Nacional de Biotecnología (CNB-CSIC) ha explicado los últimos avances en la aplicación de la tecnología CRISPR al diagnóstico virológico del SARSCoV2.
Ha comenzado contando el descubrimiento de CRISPR, con una mención obligaba a Francis Mojica, la variabilidad de los distintos sistemas CRISPR y su tremenda versatilidad. La versión 1.0 de CRISPR han sido herramientas genéticas para detectar, cortar y editar secuencias de ADN, pero desde el año 2017 se han ido desarrollando nuevas versiones de CRISPR (versión 2.0) capaces de cortan ARN de forma inespecífica y con nuevas aplicaciones. Bajo distintos acrónimos, cada uno más curioso, se han ido desarrollado nuevos sistemas basados en diferentes tipos de proteínas Cas que se están aplicando para la detección de secuencias virales. Por ejemplo, los sistemas SHERLOCK (CRISPR-Cas13a) que permite ARN con una sensibilidad a nivel atomolar; DETECTR (CRISPR-Cas12a) para cortar ADN de cadena sencilla; CARMEN que combina el sistema SHERLOCK con tecnología microfluídica de nanogotas para ensayos masivos; CONAN (CRISPR-Cas3) capaz de cortar ADN de forma inespecífica. Estos sistemas permiten desarrollar métodos de detección de virus sencillos y rápidos tipo "point of care".
En comparación con el diagnóstico por RT-PCR, el sistema CRISPR DETECTR, en concreto, es más rápido (menos de 30 minutos) y sencillo, (solo necesitan reactivos, pipetas y un termobloque), aunque son menos sensible y no es cuantitativo. Por ello, DETECTR puede ser un método excelente de cribado poblacional. Aunque todavía no se pueden comercializar, el pasado 8 mayo la FDA norteamericana aprobó su uso de emergencia como sistema de detección. Por otra parte, la capacidad del sistema CRISPR-Cas13d de cortar el ARN viral se está ensayando como posible antiviral. Obviamente, uno de los retos es asegurar la especificidad del sistema y que solo destruya el genoma del coronavirus y no otros ARN celulares.
Víctor J. Cid, Catedrático de Microbiología de la Facultad de Farmacia de la Universidad Complutense de Madrid ha presentado un resumen de la investigación y desarrollo de los tratamientos frente al COVID-19. Aunque de momento no existe ningún tratamiento especifico, a día de hoy hay ya 2749 ensayos clínicos en curso (Referencia). Aunque existen diversas estrategias, muchos de los ensayos se basan en reposicionar fármacos ya empleados para otras funciones, basándose en lo que se va conociendo sobre la biología y replicación del virus y sobre su efecto en nuestras células.
- Inhibir y neutralizar la fase de unión del virus a la célula, a través de la proteína S que se une al receptor celular ACE2 y necesita la acción de determinadas proteasas celulares, como la furina: lectinas que unen azucares para bloquear la espícula S, anticuerpos monoclonales o suero de personas convalecientes (sueroterapia), administración del receptor ACE2, inhibidores de la furina, …
- Fase de fusión de la envoltura del virus y las membranas celulares, que depende de otras proteasas celulares como la TMPRSS2 y de una bajada de pH: inhibidores de las proteasa celulares, compuestos lisosomotrópicos que inhiben el pH, …
- Fase de expresión del ARN, síntesis de poliproteinas y procesamiento posterior: inhibidores de las proteasa virales, …
- Fase de replicación: inhibidores de la RNA polimerasa, helicasa, metiltransferasa viral, …
- Otros fármacos como antiinflamatorios: corticoides, antioxidantes e
distintos inhibidores de la interleuquinas 6, interferones, lactoferrina, ivermectina, etc …
Luis Enjuanes, Profesor de Investigación del CNB-CSIC ha explicado el efecto del cambio climático en la distribución de los virus, con ejemplos concretos de virus transmitidos por mosquitos (arbovirus) como el cambio en la distribución mundial del virus de la lengua azul, el zika o el virus del Nilo Occidental. Respecto a los coronavirus, ha explicado que todos proceden de murciélagos. El paso al ser humano ha ocurrido a través de distintos animales intermediarios, las civetas en el caso del SARCoV1 o los camellos en el caso del MERS (Las civetas de granja se consumen como delicatesen en China, y la leche y orina de camella se beben en Oriente Medio). En el caso del SARSCoV2 sabemos que su origen son también los murciélagos pero todavía no está claro el animal intermediario (se ha sugerido el pangolín y las serpientes, pero no es definitivo).
Probablemente, las cuatro características que hacen que el SARSCoV2 sea un virus muy fácil de diseminarse y de difícil control sean: la presencia del virus en personas asintomáticas que lo pueden transmitir, su enorme capacidad de infectar distintos tipos celulares y causar distintas patologías (en pulmón, intestino, riñón, cerebro, corazón, vasos sanguíneos, páncreas, …), su capacidad de inducir una respuesta inmune limitada, y la reemergencia en un 14% de los infectados en pacientes "recuperados".
Respecto a la vacuna que se está desarrollando en su laboratorio, han caracterizado los genes de virulencia, esenciales para la patogenicidad del virus. Han reconstruido de forma artificial el genoma del virus, sintetizando fragmentos del genoma y ensamblándolos para generar un cromosoma artificial. Esto les permite obtener una colección de mutantes en los que le faltan desde uno, hasta cinco genes de virulencia (genes 3, 4a, 4b, 5, E). En modelos con SARSCoV1 y MERS, demostraron que estos mutantes no eran virulentos, el virus no se propagaba en las células pero el ARN era capaz de replicarse. No son, por tanto, auténticos virus sino fragmentos de ARN replicantes, replicones. Estos replicones eran capaces de proteger al 100% de los ratones infectados con el virus, actuando como vacunas. Están trabajando en dos prototipos: un basado en nanopartículas como vehículo del ARN replicon y otro en VLPs.
Juan García Arriaza, Investigador Contratado del CNB-CSIC que trabaja en el laboratorio de Mariano Esteban, ha explicado el desarrollo de una vacuna preventiva frente a COVID-19 basada en poxvirus recombinantes. Utilizan como vector el virus vaccinia Ankara modificado (MVA). Se trata de un vector basado en el virus vaccinia que, tras más de 500 pases en el laboratorio, ha ido perdiendo los genes de virulencia, está muy atenuado y no es capaz de replicarse en células humanas, es por tanto muy seguro. Además, tiene otras ventajas: flexibilidad, permite incluirle otros genes; es muy inmunogénico; de fácil de administración y bajo coste de producción. Es un vector ideal, que ya se ha utilizado como vacuna contra la malaria, la tuberculosis, cáncer y otras infecciones virales. En el caso de SARSCoV2, están ensayando dos prototipos de vacunas MVA que expresan la proteína S del coronavirus. En modelo de ratón, las vacunas producen una potente y duradera respuesta humoral (de anticuerpos neutralizantes) y celular (respuesta de alta calidad con distintos tipos de citoquinas). Ahora está pendiente repetir en otros modelos animales (hámster y primates no humanos), y comenzar las fases clínicas (plan previsto: fase I en diciembre 2020, II en marzo-abril 2021 y III en verano 2021).
Adolfo García-Sastre, Co-director del Global Health & Emerging Pathogens Institute y del Icahn School of Medicine at Mount Sinai en Nueva York, ha explicado su estrategia para buscar antivirales frente al SARSCoV2, en colaboración con otros equipos. Su trabajo consiste en buscar posibles inhibidores de las interacciones entre el virus y las proteínas humanas. Para ello se ha basado en estudios de las interacciones entre las proteínas del virus y las proteínas humanas (el interactoma) y en los cambios de fosforilación de las proteínas humanas inducidos por el virus (el fosfoproteoma). Han seleccionado y probado más de 400 compuestos distintos, y han encontrado compuestos sin efecto, con efecto antiviral, en incluso con efecto proviral, in vitro en cultivo celular. El siguiente paso son los estudios en modelos animales y la terapias de combinación. Un compuesto que destaca por su actividad antiviral in vitro es la Aplidina de PharmaMar, que ya ha comenzado los ensayos clínicos.
La mesa redonda se centrado sobre vacunas y se ha unido María Jesús Lamas, Directora de la Agencia Española de Medicamentos y Productos Sanitarios. Algunos comentarios que se han hecho:
Nos interesan vacunas cuanto antes, pero seguras, según cuatro principios básicos: i) no hacer el mal, que lo que se haga no cause otros efectos, ii) hacer el bien, que protejan, iii) información y consentimiento de las personas, iv) que estén a disposición de todo el mundo que lo necesite.
Las prisas no pueden ser excusas para saltarse estos requisitos, se trata de acelerar los pasos pero no saltarse ningún paso, por eso las agencias reguladoras. No se suprimen fases, se solapan. Se están empleando vectores en los que ya había mucha experiencia, regulación y autorizaciones para otros antígenos (adenovirus, poxvirus, …), por eso se va más rápido. Se ha acelerado el proceso de obtención de la vacuna también porque ha habido un aumento de inversión sin precedentes. Habrá varios tipos de vacunas, para distintos usos, distintas edades, se necesitan vacunas que se puedan fabricar y distribuir de forma rápida, que sean seguras y que funcionen, aunque no sean las propuestas más sofisticadas y mejores. Y sin perder la confianza de la población para no favorecer los movimientos antivacunas, por eso es importante la transparencia. Solo se van autorizar vacunas por criterios científicos, se va a ser tan rigurosos como si el desarrollo hubiera llevado 10 años. Se es más exigente en la autorización de vacunas que de cualquier medicamento. Otros medicamentos se administran a personas enfermas, las vacunas, en principio, se administran a personas sanas. Se aprueban según la relación beneficio-riesgo: no hay riesgo cero. Después de su aprobación se sigue con una fase IV de farmacovigilancia, cuando se emplean en cientos de miles de personas muy diferentes. En España tenemos el conocimiento, pero falta cooperación y capacidad de ensayos en primates y de producción.
Related word
- Lifestyle Nutrition
- Curiosidades Red Dead Redemption 2
- Viaje 3 Pelicula
- Curiosidades 800
- Lifestyle Appliances
- Curiosidades De Smells Like Teen Spirit
- Curiosidades Hipopotamo
- Viaje Na Viagem Gramado
- Viajes Quinto Sol
- Lifestyle 8925
- Curiosidades Xiaomi Redmi Note 8 Pro
- Curiosidades Forrest Gump
- Lifestyle 4Wd
- Curiosidades 2020
- Curiosidades Zootropolis
- Curiosidades Plants Vs Zombies 2
- Curiosidades Que Te Dejaran Pensando
- Viaje Y Descubra
- Curiosidades Coronavirus
- Viaje Redondo A Cancun
- Lifestyle Images
- Curiosidades Futbol
- Curiosidades Outlander
- Viaje 80 Dias
- Viaje 1 Y 2
- Who Lifestyle Guidelines
- How Much Lifestyle Cost
- How Lifestyle Affects Circulatory And Respiratory System
- Curiosidades Peaky Blinders
- Lifestyle Blogs Like Goop
- Viajar Or El Mundo
- Viaje A Agartha
- To Lifestyle Diseases
- Viaje Kenia Tanzania
- Viaje Onirico
- Curiosidades Plants Vs Zombies 2
- Curiosidades When Calls The Heart
- Curiosidades Coreia Do Norte
- Curiosidades Minecraft
- Lifestyle Trader
- Lifestyle Homes
- Lifestyle 94
- Viaje 9 Dias Japon
- Viaje 4 De Cristobal Colon
- What'S Viaje In English
- Curiosidades Coreia Do Norte
- Lifestyle Young Thug Mp3 Download
- Viaje 2 La Isla Misteriosa Cast
- Lifestyle 360 Program Associate Salary
- Curiosidades 007
- Lifestyle App
- Lifestyle Xbox Games
- Lifestyle 88
- Viaje 3 De La Tierra A La Luna Trailer
- How Lifestyle Affects The Condition Of The Skin
- Viaje 7 Dias Marruecos
- Curiosidades Fisica
- Curiosidades 7 Vidas
- Are Lifestyle Condoms Durable
- Curiosidades Alexa
- Lifestyle Without Sugar
- Viajes Falabella
- Where Is Lifestyle Shopping Mall
- Lifestyle Rentals
- Lifestyle Vs Standard Of Living
- Lifestyle 50 Bose
- Curiosidades 50 Tons De Cinza
- Lifestyle Ecig
- Lifestyle Wallpaper
- Viaje Near Me
- Lifestyle Like Meaning
- Lifestyle Products
- Viaje 9 Dias Islas Griegas
- Viaje Gender
- Curiosidades Leonardo Da Vinci
- Viaje Latino
- Where Is Lifestyle Christianity Located
- Viajes 0 Euros
- Viaje En El Tiempo Pelicula
- Curiosidades Walt Disney
- Curiosidades Outlander
- Viaje Cigars For Sale
- Lifestyle Garden Furniture
- Viaje Wine
- Other Words For Viaje
- Lifestyle India
- Curiosidades Luxemburgo
- 7 Curiosidades Sobre O Universo
- Viaje Redondo
- Lifestyle Theory
- Is Viaje A Noun
- 4 To Viaje De Cristobal Colon
- What Viaje Mean In English
- Lifestyle University
- Lifestyle Wake
- What Lifestyle Means
- Volagi Viaje For Sale
- Lifestyle X7400
- Lifestyle 88
- Viaje 2 La Isla Misteriosa Personajes
- Lifestyle Magazine
- What Does Curiosidades Means In English
- Lifestyle Images
- Lifestyle Jordan
- Viaje 800
- Curiosidades Joaninha
- 69 Curiosidades De Dragon Ball
- Lifestyle Blinds
- Lifestyle With Sahiba
- Curiosidades Windows 10
- Lifestyle Vs Standard Of Living
- Viaje 7 Dias Europa
- Will Lifestyle India
- Curiosidades 101 Dalmatas
- Viaje Y Turismo
- Lifestyle Blogs Like Cup Of Jo
- Lifestyle Health Plans
- Viaje Vs Recorrido
- Curiosidades Random
- Lifestyle Young Thug Lyrics
- What'S Viajar In English
- Volagi Viaje For Sale
- What Lifestyle Do You Want
- Lifestyle 12 Series Ii System
- When Lifestyle Variations Are Taken In Account
- Where Are Lifestyle Campers Made
- Lifestyle With A Conscience
- Curiosidades Brasil
- Viaje Pelicula
- Lifestyle Coach
- Viaje A La Semilla
- What Does Curiosidades Means In English
- Will Lifestyle Store In Delhi
- Lifestyle One
- Lifestyle 5Th Wheel
- Curiosidades Jogos Vorazes
沒有留言:
張貼留言